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Abstract

Plants usually produce a large number of secondary metabolites, including antimicrobial peptides rich in 
cysteine. Phytopeptides, categorized into five to eight groups, exhibit varied lengths, secondary structures, 
and disulphide bridge patterns. Cyclotides, a specific group, possess an end-to-end cyclic structure with a knot-
like disulphide bridge, which are known for their anti-nematode, anti-mollusk, and anti-trematode activities. 
This review provides comprehensive insights into cyclotides, covering their origin, structural and functional 
characteristics, therapeutic potential, biotechnological applications, and future prospects. Studies indicate that 
modifications in cyclotide loop regions do not alter their conformation significantly, a crucial aspect for bio-
technological applications. Cyclotides, identified as peptides with a cysteine-knot motif, offer a versatile scaf-
fold for drug delivery and combinatorial libraries due to their high tolerance for sequence variability. Molecular 
characterization reveals the selective targeting of G-coupled oxytocin and vasopressin receptors by the first 
identified cyclotide, facilitating endometrial movement during labor onset..
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Introduction

Proteins/peptides play varied and complex roles in all other mac-
romolecules. These provide intracellular and extracellular support 
for biochemical reaction catalysis, generate receptors and channels 
in membranes, intracellularly and intercellularly transport chemi-
cals, have hormone function, and defend against biotic and abiotic 
stress, among other functions in organisms.1 Among the different 
defense systems, the peptides/proteins produced by almost all or-
ganisms provide inherent protection against a wide range of in-

vading organisms.2 These specific protein-protein/protein-peptide 
interactions can act as medication candidates with therapeutic po-
tentials.3 However, due to instability, low membrane permeability, 
and inaccessibility to intracellular targets, the therapeutic potential 
of peptides remains restricted.4

Peptides (naturally produced or synthesized) are typically 
very susceptible to breakdown in the physiological milieu.5 In 
order to increase stability, conformation restrictions are intro-
duced on the backbone, and/or side chains of amino acids are 
modified to provide resistance against enzymatic cleavage. The 
cyclization and modification of amino acid side chains have been 
discovered as important tools for the stabilization of peptides in 
physiological environments. Cyclotides are a family of head-to-
tail cyclic phytopeptides with three disulphide bridges of knot 
topology.6 Intrinsically, cyclotides have different activities, such 
as antimicrobial, insecticidal, anti-nematodal, anti-mollusk, anti-
trematode, anti-HIV, and protease inhibitory, as well as hormone-
like activity.7–10 The excellent stability and sequential engineer-
ing amenability between the knots of cyclotides provide a great 
scaffold for drug design. As a result, cyclotides can be viewed 
as a natural scaffold for combinatorial libraries that are structur-
ally constrained by the cysteine knot and head-to-tail cycliza-
tion, allowing these to accept all types of mutations, except for 
conserved cysteine residues involved in knot.11–13 Furthermore, 
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some cyclotides can interact with intracellular targets by crossing 
the plasma membrane.14

Discovery

Several decades before, the first cyclotide was recognized from the 
plant Oldenlandia affinis of the Rubiaceae family, which is being 
used as traditional tea in an African country. The analysis predicted 
that the component of uterotonic tea to facilitate birth was a pep-
tide,15,16 although there is no available modern protein chemistry 
or other technique to elucidate this in detail. Its structural char-
acterization with cyclic nature and the presence of the cysteine 
knots were elucidated after 1995, and this was named, kalata B.6 
Subsequently, many more cyclic peptides similar to Kalata B were 
isolated from other plants of Rubiaceae and plants in other fami-
lies, such as Violaceae, Solanaceae, Fabaceae, Cucurbitaceae, 
and Apocynaceae. Most of the cyclotides have been reported from 
Rubiaceae and Violaceae.17,18 Furthermore, almost all of the plants 
in the Violaceae family contain cyclotides, while merely approxi-
mately 5% of plants in the Rubiaceae family contain these.18 Cy-
clotides have been discovered to be distributed across all types of 
tissues, including the roots, stems, leaves, flowers, and seeds, in 
some plants.10,19 Furthermore, a plant encompasses 10–160 dif-
ferent cyclotides. An in silico transcriptomic and proteomic study 
reported that the plant Viola tricolor of Violaceae contained 168 
cyclotides, and it was extrapolated that Violaceae can contain ap-
proximately 150,000 different cyclotides.20,21 In order to facilitate 
access to various types of identified cyclotides, a database called, 
CyBase, was recently developed, and this is publicly available on 
the website, CyBase.org.au. More than 300 cyclotides have been 
reported, and these are available on the aforementioned website for 
the further understanding of proteomics and other characteristics.22

Structural characteristics

A cyclotide, similar to other defense peptides, is derived from a 
precursor peptide that contains a signal domain/ER domain, an 
N-terminal prodomain, cyclotide, and a C-terminal prodomain. 
Sometimes, the flanking sequences of the N and C terminals ex-
hibit a type of repeat known as, the N-terminal repeat (NTR) and 
C-terminal repeat (CTR), which presumably play important roles 
in the process of N to C cyclization.23 The indispensable hypothe-
sis of Asparginyl endopeptidase (AEP) suggested that NTR, CTR, 
and more especially, N-terminal Gly/Ala and C-terminal Asn/Asp 
may principally be involved in the AEP-mediated N to C amida-
tion. Furthermore, the AEP hypothesis has been validated in the 
cyclotide-producing plant Momordica cochinchinensis by chang-
ing the Asn/Asp amino acid sequence or knocking out the AEP 
gene.24–27 The recent discovery of linearized cyclotides or acy-
clotides, with the missing Asn/Asp of the C-terminus or improper 
CTR, further strengthens the AEP hypothesis of the cyclization of 
cyclotides.24,28 In the chemical synthesis of cyclotides, disulphide 
bridges are formed during N to C peptization, while in the bio-
logical synthesis, the oxidation of cysteine begins in the precursor 
peptide, bringing the N and C termini nearby, and facilitating the 
end-to-end cyclization.27,29 However, the detailed process for the 
biosynthesis of cyclotides has not been endeavored.

Nuclear magnetic resonance (NMR) spectroscopy is generally 
used to characterize the three-dimensional structure of small pro-
teins/peptides, although this cannot be used for the characterization 
of all kinds of proteins/peptides, because a number of peptides re-
main unordered in the solution state. NMR is an excellent technique 

for cyclotides, because the highly constrained and knotted structure 
reinforces the ability of the cyclotide to remain ordered, even in the 
solution state. Furthermore, NMR can also be employed as a non-
invasive technique to evaluate the position of the cysteine, which 
forms a disulphide knot. However, its validation would require inva-
sive catalytic methods, such as reduction and alkylation.

Cyclotides are plant-origin defense peptides in the cyclic pro-
tein/peptide family, which have a higher number, when compared 
to all other cyclic groups. Furthermore, these are a unique class 
of defense molecules that comprise of various potential proper-
ties. Cyclotides usually have 27–40 amino acids, and head-to-tail 
cyclic peptides, and these are further stabilized with three disul-
phide bridges. In cysteine knot topology, disulphide bridges form 
as a ladder between CysI-CysIV, CysII-CysV and CysIII-CysVI 
(Fig. 1b). Since cyclization and the cysteine knot provide resil-
ience against chemicals, thermal, and even enzymatic degradation, 
cyclotides are the only naturally occurring peptides that have been 
reported to be orally active among peptide therapeutic leads/candi-
dates.22,30–34 Except for the cysteine position, cyclotides are highly 
tolerant to sequence variations, in terms of topology. Furthermore, 
cyclotides are structurally and highly constrained, are able to cross 
the cellular membrane, and have specific affinity for ligands or 
proteins. The very unusual stability, highly constrained topology, 
and versatile scaffold of cyclotides fuel great interest to develop 
potential therapeutic and diagnostic reagents.29,35,36

The distinctive property of proline, cis or trans, provides a spe-
cial feature in the stereometric conformation of proteins/peptides. 
Cyclotides are largely categorized into the subfamilies of Mobius 
and Bracelet, based on the cis or trans proline. Cyclotides that 
contain the cis-proline produce a twisted backbone of 180°, and 
these are known as Möbiöus, while those that contain the trans-
proline are known as Bracelet (Fig. 1).37,38 In known cyclotides, 
approximately two-thirds belong to Bracelet, and nearly one-third 
belong to Mobius. Apart from these two subfamilies, there is an-
other minor class of cyclotides known as, trypsin inhibitor.28,37,38 
Trypsin inhibitor cyclotides cross cell membranes by utilizing dif-
ferent endocytic pathways, and interacting with various kinds of 
proteins and ligands. Furthermore, trypsin inhibitors are mainly 
isolated from the seeds of Momordica cochinchinensis, with a po-
tent inhibition property of Ki = 20–30 pM. Apart from the knot 
structure, the amino acid contents of trypsin inhibitor cyclotides 
quite vary. In addition, these cyclotides (trypsin inhibitors) have 
relatively higher sequencing homology, when compared to the lin-
ear cysteine knot squash trypsin inhibitor, which has been often 
referred to earlier as, acyclic knottins.28 Although all three sub-
families have similar knot topology, except for loop composition, 
cyclotides in the Bracelet subfamily are larger and more diverse, 
when compared to those in the Mobius subfamily. Furthermore, 
compared to both Mobius and Trypsin inhibitors, Bracelet cy-
clotides offer a more complex situation in in vitro conditions for 
correct folding. As a result, Bracelet is less thoroughly investigated 
and employed in various biotechnological applications and char-
acterization, when compared to Mobius and trypsin inhibitors.28

Functional assessment

Cyclotides in the Mobius and Bracelet subfamilies are known as 
defense peptides in plant systems. The defense peptides of this group 
mainly have anti-nematode, anti-trematode, and anti-mollusk activ-
ity. Similar to other defense peptides, cyclotides exhibit its activ-
ity through physical interaction with the membrane, disturbing the 
normal integrity. As previously documented, when the larvae of 
Lepidopteran species ingest plant tissues that contain cyclotides, the 
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membrane integrity of midgut line cells becomes damaged, halting 
the proliferation. Different kalata cyclotides have varying inhibitory 
activities against the growth of nematode larvae (Haemonchus con-
tortus and Trichostrongylus colubriformis), and ranks from the most 
potent kalata B6 to the least kalata B3. In addition, cyclotide cyclo-
voilacin, such as O2, O3, O8 and O13, inhibit larval growth, similar 
to kalata B1 and B2, but lesser than B6.39 Furthermore, regardless of 
whether these are from the Mobious and Bracelet groups, cyclotides 
with 3–4 basic residues usually have higher inhibitory activity in 
larvae. Mechanistically, cyclotide Kalata B can specifically bind 
to phosphatidylethanolamine, and promote aggregation, leading to 
pore formation-mediated cell death.

Cyclotides have antimicrobial and antitumor activity. Similar to 
most antimicrobial peptides, cyclotides are basically amphipathic, 
and possess patches of hydrophobic and hydrophilic amino acids. 
Kalata B1 has potent activity against both Gram-positive and -nega-
tive bacteria,7,28 and cycloviolacin O2 has potent activity against 
Staphylococcus aureus in mice.40 In the in vitro analysis of anti-bac-
terial testing, the antimicrobial activity of cyclotides was impaired 
when the bacterial growth media contained high levels of salt.

The detailed molecular characterization revealed that uterotonic 
cyclotide selectively targets G-coupled oxytocin and vasopressin 
receptors to promote endometrium movement at the start of la-
bour.21 Cyclotides usually have anticancer activity with adverse 
hemolytic and cytotoxicity, but the modification of the primary 
structure or linearization would reduce the adverse toxicity. For 
example, in two variants of cyclovalcacins (O2 and O13), O2 has 
a serine and O13 has an alanine at the same position, and O13 has 

approximately 3–4 fold more hemolytic activity than O2.41 Fur-
thermore, several cyclotides have selective activity against cancer-
ous cells.23,42,43 For example, vingo 5 acts against cervical HeLa 
cells,44 and a cyclotide isolated from the Chinese plant Hedyotis 
diffusa (Rubaceae) has potent anti-proliferative and anti-metasta-
sis activity against various prostate cell lines and tumor growth.45 
Similarly, the HB7 obtained from Hippocrepis biflora and MCoTI-
PMI, which was engineered from MCoTI-I, exhibited tumor sup-
pressor activity in a xenograft model of prostate cancer.46

Therapeutic potential of cyclotides

Cyclotides have gained increasing attention due to its diverse 
biological properties and potential applications in agronomic and 
pharmaceutical industries. Furthermore, cyclotides have a com-
mon mode of action, and its activity is evaluated by its capacity to 
bind to target biological membranes, generate pores, and disrupt 
these. Cyclotides from Fabaceae, Poaceae, Rubiaceae and Vio-
laceae exhibit antibacterial, anti-cancer, hemolytic, nematocidal, 
antifungal, anti-HIV, insecticidal and molluscicidal activities.47

Anticancer potential of cyclotides

There is a huge library of cyclotides available for screening the an-
ticancer potential against various types of cancer cell lines. Interest-

Fig. 1. Tertiary structure and the corresponding schematic representation loop formation in different classes of cyclotides. (a). Tertiary structure: the different 
size loops provide the differential activity of class Bracelet, Mobius and Trypsin inhibitor, and the connecting line defines the disulphides, which generate the 
loops. (b). Schematic representation of the loop: C denotes Cys, and the lines that connect these define the pattern of the disulphide bridge, which created loops 
of variable sizes. The tertiary structure of the different classes of cyclotides and the schematic representation were illustrated using CyBase (CyBase.org.au).
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ingly, cyclotides are a rapidly emerging class of plant-derived cyclic 
peptides, which exhibit great toxicity against cancerous cell lines. 
The present study discussed the anti-cancer properties of several 
cyclotides against a variety of tumors, and the limited information 
on its mode of action. In addition, the data was tabulated to provide 
concise information on anticancer cyclotides (Table 1).23,48–59

A previous study revealed that nucleotide T1 and T4 can suppress 
HeLa cell proliferation, with an IC50 value of 0.6 µM.48 Hedyotide 
B5 (HB5), HB6, HB7, HB8 and HB9 were isolated from the leaves 
and root of Hedyotis biflora, and were found to have cytotoxicity 
against four pancreatic cancer cell lines. In particular, HB7 inhib-
ited the migration and invasion of capan2 cells and suppressed the 
tumor growth by reducing the tumor size and weight in a xeno-
graft model.49 A recent study reported that several cyclotides from 
Viola tricolor, such as verve peptide A, CyO2, CyO13 and kalata 
B1, suppress the proliferation of glioblastoma U-87MG and SH-
SY5Y cells, with IC50 values ranging within 2.15–7.92 µM. Further 
investigations have revealed that the combination of verve peptide 
A or CyO2 with temozolomide (TMZ) can enhance the apoptosis 
of U-87MG cells, suggesting that these cyclotides may increase the 
efficacy of TMZ chemotherapy against glioblastoma.60 Hyen D is 
the most abundant cyclotide of the medicinal plant Hybanthus en-
neaspermus, and has been shown to exert cytotoxic effects on Hela 
cells, with an IC50 value of 0.92 µM.61 Two cyclotides, Poca A and 
B, were isolated from the root of Pombalia calceolaria, and it was 
observed that these can reduce MDA-MB-231 cell viability, while 
CyO4 can inhibit the proliferation and migration of breast cancer 
cells.50 Oligopeptides obtained from Momordica charantia, such 
as MCLO-12, inhibit the proliferation and induce apoptosis in non-
small cell lung A549 cancer cells in a dose-dependent manner by 
suppressing the MAPK-p38 and JNK pathways.62 Recently, a bio-
active peptide, IM-7, was reported to suppress the proliferation of 
leukemia MOLT-4 and NB4 cells in a dose-dependent manner, and 
induce autophagy and apoptosis by modulating the beclin1, cas-
pase-3 and Bcl-2 expression, and it was also found that IM-7 can 
enhance the chemotherapeutic effects of daunorubicin.63 Diffusa 
cyclotide (DC) 1, DC2 and DC3 were purified from the root and 
leaves of Hedyotis diffusa, and were found to have potent cytotoxic-
ity against prostate cancer PC3, DU145 and LNCaP cells in vitro. In 
particular, DC3 suppressed the proliferation, migration and invasion 
of LNCaP cells, and inhibited tumor growth in a xenograft model.64 
Previously, the CyO2 of Viola odorata was reported to have the abil-
ity to selectively kill highly proliferative tumor cells, and cause cell 
death by membrane permeabilization. Further investigations have 
indicated that the combination of CyO2 and doxorubicin can inhibit 
the proliferation of MCF-7 and drug-resistant MCF-7/ADR cells, 
highlighting the chemosensitization potential of CyO2 against dox-
orubicin-resistant breast cancer cells.51 Furthermore, several novel 
chassatides were isolated from Chassatide chartacea, and chassa-
tide C7, C8 and C11 inhibited the proliferation of HeLa cells, with 
IC50 values of 1.2, 1.0 and 1.2 µM, respectively.52 Cyclotides ob-
tained from Clitoria ternatea were evaluated for its anticancer and 
chemosensitizing potential against the A549 and A549/paclitaxel 
cell lines, and the results indicated that some of these cyclotides 
can significantly reduce the IC50 of paclitaxel by many folds against 
lung cancer cells.53 The linoorbitides (LOB) 1, LOB2 and LOB3 ob-
tained from flaxseed have potent anticancer activities against breast 
cancer MCF-7 and Sk-Br-3, and melanoma A375 cells, in which 
LOB3 has the most cytotoxic and selective activity.65

Anti-HIV potential of cyclotides

HIV is a potentially fatal virus that targets CD4+ T lymphocytes and 

macrophages. HIV infection can dramatically reduce CD4+ cells, 
leading to the onset of AIDS with a set of symptoms. More than 100 
cyclotides have been identified for its activities against HIV infec-
tion.66 Concise details on anti-HIV cyclotides have been collated, in 
order to allow readers to view these all at once (Table 2).9,66–71

The EC50 value is usually used to evaluate the effectiveness of 
cyclotides in anti-HIV activity. Various cyclotides have varying 
anti-HIV activities, with EC50 values ranging within 0.04–1.21 
µM. Crude extracts of Chassalia parviflora, circulin A and circulin 
B have exhibited strong activity against HIV, with an EC50 ranging 
within 0.04–0.26 µM.67 Subsequently, the in vitro anti-viral activ-
ity against HIV of another four cyclotides obtained from Chassalia 
parviflora, circulin C–F exhibited a similar activity, with an EC50 
ranging within 0.05–0.27 µM.9 The cycloviolins A–D obtained 
from Leonia cymosa exhibit anti-HIV activity, with an EC50 of 
0.13 µM.68 Cycloviolacins O13, O14 and O24, and kalata B1 have 
also exhibited significant anti-HIV activity, with an EC50 value of 
0.32, 0.44, 0.30 and 0.66 µM respectively.66,69 The anti-HIV ac-
tivity of cycloviolacins Y1/Y4/Y5 and kalata B1 exhibit an EC50 
of 1.21, 0.20, 0.04 and 0.66 µM, respectively.69 The leaf-specific 
cyclotide Vhl-1 obtained from Viola hederacea exhibit anti-HIV 
activity, with an EC50 of 0.87 µM.70 Furthermore, cyclotide pali-
courein was isolated from Palicourea condensata, and exhibited 
significant activity against viral strain HIV-1RF in CEM-SS cells, 
with an EC50 of 0.10 µM.71

Bio-technological applications

Cyclotides can be applied in the industry, such as the utilization 
of naturally active cyclotides as a bio-insecticide, given that sev-
eral plants produce insecticidal cyclotides. For instance, cyclotides 
from the areal part of butterfly pea have potent membrane leakage 
activity for the insect gut mimicking membrane.32 Subsequently, 
the butterfly pea areal part contains potential insecticidal cy-
clotides.34 Recently, the extract obtained from butterfly pea has 
been demonstrated to contain a bioinsecticide in Australia, and 
this bioinsecticide (Sero-X) can be commercially used on maca-
damia nut and cotton crops. Similarly, due to the inhibitory ac-
tivity of Kalata-B1 against activated peripheral lymphocytes, the 
direct plausibility of this promising pharmaceutical has led to its 
application as an immunosuppressant. The subsequent study of the 
lysine scanning of kalata B1 and the analysis of the antiprolifera-
tive activity of prominent active mutant T20K revealed the inhibi-
tion of T cell proliferation by downregulating the expression of 
interleukin-2, its receptor, interferon-γ and tumor necrosis factor 
(TNF-α).72,73 After several successive in vivo experiments with 
T20K kalata B1, Cyxone was recently produced, and this is pres-
ently being tested in a phase 1 clinical trial as an immunosuppres-
sant.74 Furthermore, cyclotides obtained from Palicourea sessilis 
were identified as pase A–E, and some of these cyclotides, such 
as pase A–D, inhibit the proliferation of human lymphocytes in a 
dose-dependent manner, suggesting that pase cyclotides may work 
as immunosuppressants.75

As a consequence of high tolerance of sequence variability, cy-
clotides and other knottin peptides have been developed for the di-
agnosis, regulation of expression or inhibition, and specific deliv-
ery of candidate drugs through the introduction of multiple specific 
epitopes.29,76 Grafting bioactive epitopes onto specific cyclotide 
frames can help to stabilize the bioactive epitope and enhance the 
ability to cross membranes.14 The first pharmacologically active 
construct of cyclotides was designed by incorporating the vascular 
endothelial growth factor receptor on multiple loops of kalata B1.77 
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Table 1.  Anti-cancer cyclotides and details, such as source, family/subfamily and IC50

Cytotoxic activity of cyclotides
S.N. Cyclotides Plant Family/Subfamily IC50 (µM) Reference
1 Chassatide C2 Chassalia chartacea Rubiaceae/Bracelet 2.44 52
2 Chassatide C7 1.20 52
3 Chassatide C 1.00 52
4 Chassatide C10 Rubiaceae/Hybrid 5.00 52
5 Chassatide C11 Rubiaceae/Bracelet 1.20 52
6 Cliotide T1 Clitoria ternatea Fabaceae/Bracelet 0.60 48
7 Cliotide T10 0.70 53
8 Cliotide T12 0.78 53
9 Cliotide T2 Fabaceae/Möbius 8.00 48,53
10 Cliotide T3 2.00 48,53
11 Cliotide T7 Fabaceae/Bracelet 0.73 53
12 Cter B 3.50 54
13 Cter E 2.50 54
14 Cter G 3.00 54
15 Cycloviolacin O19 Viola odorata Violaceae/Bracelet 0.52 54,55
16 Cycloviolacin O3 0.42 54
17 Cycloviolacin O4 Pombalia calceolaria Viola 

odorata Hedyotis diffusa
9.80 50

18 Cycloviolacin O8 0.80–1.15 56
19 Hedyotide B5 Rubiaceae/Bracelet 1.03–1.32 49
20 Hedyotide B6 1.85–2.33 49
21 Hedyotide B7 0.33–0.68 49
22 Hedyotide B8 1.88–3.11 49
23 Hedyotide B9 1.14–2.01 49
24 Mela 1 Melicytus latifolius Violaceae/Möbius 2.09–9.83 57
25 Mela 2 1.30–19.26 57
26 Mela 3 2.04–18.73 57
27 Mela 4 2.04–18.73 57
28 Mela 5 1.58–11.42 57
29 Mela 6 1.58–11.42 51
30 Tricyclon A Viola tricolor Violaceae/Bracelet 8.70 54
31 Poca A Pombalia calceolaria 1.80 50
32 Poca B 2.70 50
33 Psyle A Psychotria leptothyrsa Rubiaceae/Bracelet 7.770 51
34 Psyle E 0.64–1.73 51
35 Mram 8 Viola philippica 1.75–15.5 57
36 Vaby A Viola abyssinica Violaceae/Möbius 7.60 58
37 Vaby D 2.60 58
38 Vibi E Viola biflora Violaceae/Bracelet 3.20 23
39 Vibi G 0.96 23
40 Vibi H 1.60 23
41 Viphi A Viola philippica 1.75–15.5 23
42 Viphi D 1.55–5.24 59
43 Viphi E 1.55–5.24 59
44 Viphi F 1.03–6.35 59
45 Viphi G 1.03–6.35 59
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The goal of the growth factor receptor grafting was to competitively 
inhibit the interaction between the growth factor and its receptor, 
in order to stop the proliferation of cancerous cells in the vascular 
system. In a similar approach, several antagonists were designed 
by utilizing cell-permeating trypsin inhibitor cyclotides to target 
cytokine-associated cancers. For instance, angiotensin-1-7 (Ang 
1–7) is a peptide hormone that counters against angiotensin II via the 
MAS receptor, and exhibits vasodilator, anti-proliferative and anti-
angiogenic activity. However, its poor stability in serum affects its 
clinical application. Interestingly, Ang 1–7 grafted in MCoTI-I has 
good stability, and a comparable affinity for the MAS receptor.33 In 
addition, several constructs of cyclotides were designed to circum-
vent cardiovascular problems, neurodegenerative diseases, autoim-
mune disorders, such as multiple sclerosis, and other inflammatory 
response, which were probably executed through the modulation of 
protein-protein interaction.33,78,79

Stabilized scaffolds due to the presence of disulphide knots and 
cyclic nature offer a window to incorporate biologically active 
peptides between the backbone of the intra-cysteine sequence, in 
order to avoid enzymatic degradation. Recently, the oral natural 
disulphide knot construct, Linzess (guanylate cyclase C agonist), 
has been approved by the FDA to combat chronic constipation and 
petulant bowel syndrome,80 bringing great interest for the develop-
ment of other knottin-based oral drug candidates. The incorpora-
tion of bioactive peptides between the cysteines loop of cyclotides 
or knottin peptides can lead to several successful constructs, such 
as the orally active analgesic Bradikynin B1 construct developed 
by grafting the active peptide into kalata B1.81 Similarly, the anti-
obesity antagonist candidate molecule was developed through the 
incorporation of a group of peptide hormones, Melanocortin, with 

kalata B1.82 Angiogenic peptides, such as laminin and osteopontin, 
were incorporated into the trypsin inhibitor, MCoTI-II, to develop 
an antagonist of the vascular endothelial growth factor receptor.83 
All these constructs have significant potency and great stability 
in physiologic conditions. Therefore, the unique characteristic of 
the very high sequence tolerance of cyclotides can provide a great 
lead scaffold to construct stable candidate drugs or diagnostic 
molecules, opening a window for the development of various lead 
molecules.

Future perspectives

In Australia, the butterfly pea extract known as, Sero-X, has re-
cently been approved as a bioinsecticide for use on macadamia 
nut and cotton crops. The first cyclotide pharmacologically active 
construct was created by incorporating the vascular endothelial 
growth factor receptor on the multiple loops of kalata B1. The re-
cent FDA approval of the oral natural disulphide knot construct, 
Linzess, against constipation and petulant bowel syndrome has 
triggered great interest on the development of oral knottin-based 
drug constructs. In this line, several constructs have been reported, 
such as analgesic Bradikynin B1, an anti-obesity antagonist by 
peptide hormone Melanocortin with kalata B1, angiogenic pep-
tides, such as laminin and osteopontin incorporated into trypsin 
inhibitor MCoTI-II, and others. Due to the numerous biological 
properties and high tolerance for sequence variability, cyclotides 
are attracting a lot of attention for its potential applications in the 
pharmaceutical and agricultural sectors.

Table 2.  Anti-HIV activity exhibiting cyclotides and details, including source, family/subfamily and EC50

Anti-HIV activity of cyclotides

S.N. Cyclotides Plant Family/Subfamily EC50 (µM) Reference

1 Circulin A Chassalia parvifolia Rubiaceae/Bracelet 0.04–0.26 67

2 Circulin B

3 Circulin C 0.05–0.275 9

4 Circulin D

5 Circulin E

6 Circulin F

7 Cycloviolin A Leonia cymosa Violacea/Bracelet 0.13 68

8 Cycloviolin B

9 Cycloviolin C

10 Cycloviolin D

11 Cycloviolacin O13 Viola odorata 0.32 66

12 Cycloviolacin O14 Violacea/Möbius 0.44

13 Cycloviolacin O24 0.30

14 Cycloviolacin Y1 Viola yedoensis Violaceae/Bracelet 1.21 69

15 Cycloviolacin Y4 0.20

16 Cycloviolacin Y5 0.04

17 Kalata B1 Violacea/Möbius 0.66

18 Vhl-1 Viola hederacea Violaceae/Bracelet 0.87 70

19 Palicourein Palicourea condensate Rubiaceae/Bracelet 0.10 71
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Conclusions

In contrast to the animal system, the majority of plant antimicro-
bial peptides comprise of multiple disulphide bridges, which pro-
vide compactness and stability in adverse environments, and even 
against metabolic enzymes. Cyclotides have high stability against 
high-temperature and enzymatic degradation. Due to its structure 
nature, cyclotides can act as stabilized scaffolds to open a window 
for inserting biologically active peptides between inter-cysteine 
sequences (loop), in order to avoid enzymatic degradation.

To date, the majority of plant diversity remains unexplored, and 
cyclotides have only been reported from a few of plant families. 
Therefore, the present status demands more intensive researches, 
in order to identify more biologically functional, stable and safe 
cyclotides, which may benefit humans. Identifying cyclotides can 
provide the clues and footsteps to the synthetic biology of pep-
tides. At present, the majority of studies have used plant leaves and 
roots for identifying novel cyclotides. However, it remains unclear 
whether plant seeds contain novel cyclotides, because cyclotides 
linoorbitides was reported in the seeds of Linum usitatissimum.
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